Fast computing of the Moore-Penrose inverse matrix
نویسندگان
چکیده
In this article a fast computational method is provided in order to calculate the Moore-Penrose inverse of full rank m× n matrices and of square matrices with at least one zero row or column. Sufficient conditions are also given for special type products of square matrices so that the reverse order law for the Moore-Penrose inverse is satisfied.
منابع مشابه
An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse
A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.
متن کاملEla Fast Computing of the Moore - Penrose Inverse Matrix
In this article a fast computational method is provided in order to calculate the Moore-Penrose inverse of full rank m× n matrices and of square matrices with at least one zero row or column. Sufficient conditions are also given for special type products of square matrices so that the reverse order law for the Moore-Penrose inverse is satisfied.
متن کاملFast Computation of Moore-Penrose Inverse Matrices
Many neural learning algorithms require to solve large least square systems in order to obtain synaptic weights. Moore-Penrose inverse matrices allow for solving such systems, even with rank deficiency, and they provide minimum-norm vectors of synaptic weights, which contribute to the regularization of the input-output mapping. It is thus of interest to develop fast and accurate algorithms for ...
متن کاملHermitian solutions to the system of operator equations T_iX=U_i.
In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...
متن کاملSymbolic computation of weighted Moore-Penrose inverse using partitioning method
We propose a method and algorithm for computing the weighted MoorePenrose inverse of one-variable rational matrices. Continuing this idea, we develop an algorithm for computing the weighted Moore-Penrose inverse of one-variable polynomial matrix. These methods and algorithms are generalizations of the method or computing the weighted Moore-Penrose inverse for constant matrices, originated in [2...
متن کامل